If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32-2x^2+8x=0
a = -2; b = 8; c = +32;
Δ = b2-4ac
Δ = 82-4·(-2)·32
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{5}}{2*-2}=\frac{-8-8\sqrt{5}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{5}}{2*-2}=\frac{-8+8\sqrt{5}}{-4} $
| 11.68x-5=−5 | | 11.68x−5=−5 | | 108=121.5-1.5u^2 | | 4x+21=35 | | 36=36/2a | | 14k=2 | | 28k=1 | | X(p)=17-0.35p | | 2x-1=-7x-10 | | 7x-5=5x-3 | | 0.35=0.7y | | 4x7+3-4=27 | | 13-(-2x+5)=5 | | 3 4(1 6x+16)=3 7(43 8x−21) | | V(x)=(4-2x)(2-2x)x | | x(10-x)=10x+10-x | | V(x)=x(8^2-2x8x2x+(8x)^2) | | (z+3)(z+2)=z+3z+20 | | 2y+15=3(y-4) | | 3(2x-4)=5x–(12-x) | | 2y+15=3y-12 | | 10−9x2+4x=−6x^2 | | R+c=90 | | 21=u/3-9 | | 2x-4(x-5)=-6+4x | | 5X-2(x-5)=8+5x+2 | | x/2+2=5/3x+19/9 | | 6x-4=2(x-3)x | | 6x-4=2(x-3) | | (4+x)(4+x)=23 | | 12-(x÷3)=72 | | x+2/14=3/7+x-8/3 |